Developmental changes in pedunculopontine nucleus (PPN) neurons.

نویسندگان

  • T Kobayashi
  • C Good
  • J Biedermann
  • C Barnes
  • R D Skinner
  • E Garcia-Rill
چکیده

The developmental decrease in rapid-eye-movement (REM) sleep in man occurs between birth and after puberty. We hypothesize that if this decrease in REM sleep does not occur, lifelong increases in REM sleep drive may ensue. Such disorders are characterized by hypervigilance and sensory-gating deficits, such as are present in postpubertal onset disorders like schizophrenia, panic attacks (a form of anxiety disorder), and depression. The decrease in REM sleep in the rat occurs between 10 and 30 days of age. We studied changes in size and physiological properties of pedunculopontine nucleus (PPN) cells involved in the control of arousal, i.e., waking and REM sleep. During the largest decrease in REM sleep (12-21 days), cholinergic PPN neurons doubled in cell area, the hypertrophy peaking at 15-16 days, then decreasing in area by 20-21 days. Noncholinergic PPN cells did not change in area during this period. We confirmed the presence of two populations of PPN neurons based on action potential (AP) duration, with the proportion of short-AP-duration cells increasing and long AP duration decreasing between 12 and 21 days. Most cholinergic and noncholinergic cells had short AP durations. Afterhyperpolarization (AHP) duration became segregated into long and short AHP duration after 15 days. Cells with short AP duration also had short AHP duration. The proportion of PPN cells with Ih current increased gradually, peaking at 15 days, then decreased by 21 days. These changes in morphological and physiological properties are discussed in relation to the developmental decrease in REM sleep.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responses of Developing Pedunculopontine Neurons to Glutamate Receptor Agonists 1

27 The pedunculopontine nucleus (PPN) is involved in the generation and maintenance of 28 waking and rapid eye movement (REM) sleep, forming part of the reticular activating system. 29 The PPN receives glutamatergic afferents from other mesopontine nuclei and glutamatergic 30 input is believed to be involved in the generation of arousal states. We tested the hypothesis 31 that, from postnatal d...

متن کامل

Responses of developing pedunculopontine neurons to glutamate receptor agonists.

The pedunculopontine nucleus (PPN) is involved in the generation and maintenance of waking and rapid eye movement (REM) sleep, forming part of the reticular activating system. The PPN receives glutamatergic afferents from other mesopontine nuclei, and glutamatergic input is believed to be involved in the generation of arousal states. We tested the hypothesis that, from postnatal days 9 to 17 in...

متن کامل

Induction of long-lasting depolarization in medioventral medulla neurons by cholinergic input from the pedunculopontine nucleus.

Stimulation of the pedunculopontine nucleus (PPN) is known to induce changes in arousal and postural/locomotor states by activation of such descending targets as the caudal pons and the medioventral medulla (MED). Previously, PPN stimulation was reported to induce prolonged responses (PRs) in intracellularly recorded caudal pontine neurons in vitro. The present study used intracellular recordin...

متن کامل

In vivo electrophysiological responses of pedunculopontine neurons to static muscle contraction.

The pedunculopontine nucleus (PPN) has previously been implicated in central command regulation of the cardiorespiratory adjustments that accompany exercise. The current study was executed to begin to address the potential role of the PPN in the regulation of cardiorespiratory adjustments evoked by muscle contraction. Extracellular single-unit recording was employed to document the responses of...

متن کامل

GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories.

gamma-Aminobutyric acid (GABA)ergic neurons are widely distributed in brainstem structures involved in the regulation of the sleep-wake cycle, locomotion, and attention. These brainstem structures include the pedunculopontine nucleus (PPN), which is traditionally characterized by its population of cholinergic neurons that have local and wide-ranging connections. The functional heterogeneity of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 91 4  شماره 

صفحات  -

تاریخ انتشار 2004